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Abstract

We discuss a concrete version of the Langlands-Rapoport conjecture in the case of the mod-
ular curve, and use this case to illuminate some of the more abstract features of the Langlands-
Rapoport conjecture for general (abelian type) Shimura varieties.

1 Motivation

The Langlands-Rapoport conjecture is all about counting mod-p points on Shimura varieties. So
to start, let’s give some quick motivation for why we want to do this.

Say we’re interested in the Langlands program, whose goal is roughly to relate Galois rep-
resentations to automorphic representations. The main source of Galois representation is the
cohomology of varieties over number fields. The main source of automorphic representations is
constructions with adele groups. Shimura varieties live in both worlds: they are constructed from
adele groups, and also have the structure of varieties over number fields, so their cohomology
carries both Galois and automorphic representations. In short, we expect the global Langlands
correspondence to be realized in the cohomology of Shimura varieties (at least for representations
accessible from such cohomology). The Grothendieck-Lefschetz trace formula philosophy tells us
that we can understand the cohomology of Shimura varieties in terms of their mod-p points.

The Langlands-Rapoport conjecture describes the set of Fp-points of a Shimura variety in a
purely group-theoreic way that is suitable for applications to cohomology. The general formula-
tion is quite abstract, so our goal is to work through a simple case, and use it to help understand
the general statement.

2 Counting Points on Modular Curves

The most basic examples of Shimura varieties are modular curves. There are many ways to define
modular curves; we’ll define them by their moduli structure, since this is the description which
will be useful for point counting.

2.1 Definition of Modular Curves

Fix a positive integer m and consider the moduli problem over Z[ 1
m ] of elliptic curves with level-

m-structure,

T 7→ {(E, α) : E an elliptic curve over T and α : (Z/mZ)2
T
∼→ E[m]}.

1



For m ≥ 3, this is representable by a smooth affine curve Mm/Z[ 1
m ], which we call the modular

curve of level m.
If p is a prime not dividing m, then we can consider the pointsMm(Fq) of our modular curve

over a finite field with q = pr elements. Our goal is a concrete group-theoretic expression for the
set of these points. We will find such an expression by making use of the moduli interpretation.
That is, we will count elliptic curves with level-m structure over Fq.

It is helpful to break the problem down into two main steps:

1. Count isogeny classes of elliptic curves over Fq;

2. Count elliptic curves in a fixed isogeny class.

2.2 Honda-Tate Theory

The first step is to describe the set of isogeny classes of elliptic curves over Fq. Honda-Tate theory
does this by showing that the isogeny class of an elliptic curve (or more generally, abelian variety)
over a finite field is determined by its characteristic polynomial of Frobenius. For a more thorough
survey of Honda-Tate theory, see II.2 of [Mil08].

First we need some facts about (geometric) Frobenius, which are essentially given by the Weil
conjectures.

Theorem 1. Let A be abelian varieties over Fq. Then the characteristic polynomial pA of (geometric)
Frobenius acting on H1

ét(AFp
, Q`) has coefficients in Z and is independent of `. Furthermore, the roots

of pA are Weil integers of weight q, meaning they are algebraic integers satisfying |σ(α)|2 = q for any
embedding Q→ C.

With this setup, we can state the main theorem of Honda-Tate theory.

Theorem 2 (Honda-Tate). A and B are isogenous exactly when pA = pB. More precisely, the map
sending A to a root of pA (i.e. Frobenius eigenvalue) defines a bijection

{simple abelian varieties over Fq}/isogeny ∼←→ {Weil integers of weight q}/ GalQ

(here GalQ denotes the absolute Galois group of Q, which has a natural action on the set of Weil q-integers).

The injectivity of this map follows from Tate’s isogeny theorem [Tat66]

Hom(A, B)⊗Z Z`
∼−→ HomGalFq

(T`A, T`B)

(using the fact that T`A is a semisimple GalFq -representation, thus determined by Frobenius eigen-
values, and that for simple abelian varieties Hom(A, B) 6= 0 iff A, B are isogenous).

Surjectivity was shown by Honda [Hon68]. For this direction we need to produce an abelian
variety from a Weil integer. In fact the Weil integer is used to construct a CM abelian variety in
characteristic zero, which is then reduced to characteristic p to get the desired abelian variety over
Fq. As a corollary, we see that every isogeny class of abelian varieties over a finite field contains
the reduction of a CM abe;ilan variety from characteristic zero.

We can rephrase this parametrization of isogeny class purely group-theoretically. We’ll restrict
to the case of elliptic curves. An elliptic curve, being 1-dimensional, has pA a monic integral
polynomial of degree 2. This determines a semisimple conjugacy class in GL2(Q), the class of
which it is the characteristic polynomial. The conditions of Honda-Tate theory can be translated
to group theoretic conditions, cf. Theorem 10.4 of [Sch11]. Namely, we require that our conjugacy
class has trace in Z and determinant q (so that its eigenvalues are Weil q-integers), and is elliptic
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in GL2(R) (so that it corresponds to an elliptic curve, rather than a higher-dimensional abelian
variety). Elliptic is a technical condition which in this case means the two eigenvalues are complex
conjugates, including the case that they are real and identical.

The result is that isogeny classes of elliptic curves over Fq are in bijection with semisimple
conjugacy classes of GL2(Q) which are elliptic in GL2(R) and which have determinant equal to q
and trace in Z. This is a purely group-theoretic description of the sort we’re looking for.

2.3 Points in an Isogeny Class

Now that we have a satisfactory expression for isogeny classes, we want to count elliptic curves
(with level structure) isogenous to a fixed elliptic curve E0 over Fq. We do this by using coho-
mology to count isogenies. For more details see §5 of [Sch11], or Part III of [Kot90] for a similar
discussion in the case of Siegel modular varieties.

Define
Hp = H1

ét(E0,Fp
, A

p
f )

and
Hp = H1

crys(E0/Zq)⊗Zq Qq

(for ease of notation we write Zq := W(Fq) and Qq := W(Fq)[
1
p ]). If f : E0 → E is an isogeny,

then we obtain lattices by pulling back the integral cohomology groups:

Λp = f ∗(H1
ét(E0,Fp

, Ẑp)) ⊂ Hp

and
Λp = f ∗(H1

crys(E0/Zq)) ⊂ Hp.

In fact, the isogeny f is determined by the pair (Λp, Λp), and such a pair arises from an isogeny
exactly when Λp (resp. Λp) is stable under the Galois (resp. Frobenius/Verschiebung) action. This
lets us express isogenies in a linear algebraic form; modding out by the choice of isogeny (to be
precise, by a group of self-isogenies) gives an expression for the set of elliptic curves with level
structure in a fixed isogeny class.

Define

Yp = {(Λp, φ) : Λp ⊂ Hp a GalFq -stable Ẑp-lattice,

φ : (Z/mZ)2 ∼→ Λp ⊗Ẑp Z/mZ a GalFq -equivariant isomorphism},
Yp = {Λp : Λp ⊂ Hp a F, V-stable Zq-lattice},

I = (End(E0)⊗Z Q)×

(here GalFq = Gal(Fq/Fq)). Note that I acts on Yp and Yp via its actions on Hp and Hp.

Proposition 3. The association described above gives a bijection

{(E, φ) ∈ Mm(Fq) : E isogenous to E0}
∼−→ I\Yp ×Yp.

2.4 Points on the Modular Curve

We can go further to describe the points in an isogeny class purely group-theoretically.
As Hp is a rank-2 A

p
f -module, the group GL2(A

p
f ) acts transitively on Yp, and the subgroup

stabilizing a point (Λp, φ) is

Kp
m = {g ∈ GL2(Ẑ

p) : g ≡ id mod m} ⊂ GL2(A
p
f ).
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Thus the set of pairs (Λp, φ) is identified with the quotient GL2(A
p
f )/Kp

m. To detect the GalFq

action, consider the action of Frobq ∈ GalFq on Hp, and let γ ∈ GL2(A
p
f ) be the corresponding

element. A bit of work shows that we can rewrite Yp as

Yp(γ) = {g ∈ GL2(A
p
f )/Kp

m : g−1γg ∈ Kp
m}.

Likewise we can rewrite Yp group-theoretically. The group GL2(Qq) acts transitively on lattices
Λp ⊂ Hp, and the stabilizer of a lattice is GL2(Zq). The set of lattices is identified with the
quotient. Consider the action of F on Hp: since it is σ-linear, we can write it as δσ, where σ is the
lift of Frobenius on Qq and δ ∈ GL2(Qq). With a bit of work we see that Yp can be rewritten

Yp(δ) = {h ∈ GL2(Qq)/ GL2(Zq) : h−1δhσ ∈ GL2(Zq)

(
p 0
0 1

)
GL2(Zq)}.

We can now write the Fq-points of our modular curve as

Mm(Fq) = ä
(γ0,γ,δ)

I\Yp(γ)×Yp(δ),

where (γ0, γ, δ) runs over tuples where: γ0 is a conjugacy class of semisimple elements of GL2(Q)
corresponding to an isogeny class of elliptic curves as explained above, and γ ∈ GL2(A

p
f ), δ ∈

GL2(Qq) are the elements corresponding to Frobenius on étale and crystalline cohomology as
above. The triples appearing in this disjoint union can be described purely in terms of group
theory; this is the notion of a Kottwitz triple. The result is a purely group-theoretic expression for
the set Mm(Fq), ready for applications to cohomology.

3 The Langlands-Rapoport Conjecture

We would like to be able to perform this type of point counting on general Shimura varieties.
There are two main obstacles to generalizing.

First, general Shimura varieties have more complicated moduli data. The modular curve sim-
ply parametrized elliptic curves with level structure, but for example in the case of Hodge type
our Shimura variety parametrizes abelian varieties with a polarization, a set of tensors, and level
structure. This makes it much more difficult to work with these objects concretely.

Second, most Shimura varieties are not honest moduli spaces at the integral or mod p level (or
even rationally). Our modular curve has a moduli interpretation over Z[ 1

m ], so the mod p points
can be literally interpreted as elliptic curves with level structure over finite fields. Integral models
of Hodge type Shimura varieties are embedded in integral models of Siegel modular varieties (up
to a normalization, which is an important detail that we will ignore). The latter do have a moduli
structure, so we can still associate abelian varieties (with various extra structures) to points on
our Hodge type integral model. But the image is not well understood, so there is no complete
description of points in terms of abelian varieties. This makes it nearly impossible to work with
these objects concretely.

Nonetheless, at the cost of some abstraction, we do have a satisfactory description of the mod
p points of Shimura varieties. We’ll give the statement (without any detail), and then see how it
relates to the more familiar case of the modular curve.

Conjecture 4. Let Sp(G, X) be a suitable integral model of a Shimura variety of Hodge (or abelian) type
arising from a Shimura datum (G, X). There is a bijection

Sp(G, X)(Fp)
∼−→ä

[φ]

lim←−
Kp

Iφ(Q)\Xp(φ)× Xp(φ)/Kp
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equivariant for the action of G(A
p
f ) and the Frobenius Φ, where

• φ varies over conjugacy classes of admissible morphisms Q→ G(Q)o GalQ,

• Kp varies over compact open subgroups of G(A
p
f ), and

• Xp(φ) ⊂ G(A
p
f ), Xp(φ) ⊂ G(Q̂ur

p )/G(Ẑur
p ) are subsets defined explicitly in terms of φ.

This has been proven in many cases by Kisin [Kis17] (up to a twist in the action of Iφ(Q) on
Xp(φ)× Xp(φ)).

It is clear that the basic form of this expression is similar to the case of the modular curve.
Indeed, we can understand it the same way: as a disjoint union over isogeny classes, and within
each isogeny class is a set parametrizing prime-to-p isogenies and a set parametrizing p-power
isogenies quotiented by a group of self-isogenies (the limit over Kp is a technical detail and should
not damage the intuition).

The core of the difference between the statement for modular curves and this general one is the
parametrization of isogeny classes. The disjoint union in this case is parametrized by admissible
morphisms from the quasi-motivic Galois gerb Q to G (or more precisely, the neutral Galois gerb
G(Q)o GalQ associated to G). To give a vague idea, a Galois gerb (over Q) consists of the data of
an algebraic group H over Q and an extension of groups

1→ H(Q)→ H→ GalQ → 1

satisfying some axioms. The quasi-motivic Galois gerb Q is a certain Galois gerb which is an
extension of GalQ by a certain pro-torus. Rather than going into more detail about the definition,
we’ll try to give an idea of the role it plays.

The idea is that Q is (a good enough replacement for) the Tannakian fundamental group of the
category of motives over Fp. (See §15 of [Mil17] for a discussion of the “fake” category of motives
over Fp and its fundamental group). For those unfamiliar, a Tannakian category is a category
with particular nice “linear-algebraic” properties, and which is (by some abstract theoy) therefore
equivalent to the category of representations of some group, which we call its fundamental group.
Though we don’t know what the category of motives is, we know enough about what it “should
be” (in particular, it should be a Tannakian category) that we can define its fundamental group
in a way that is useful to work with; namely, the quasi-motivic Galois gerb Q. But how does this
fundamental group fit into our framework?

As a first step, Honda-Tate theory tells us that the motive associated to an abelian variety is
its isogeny class. As a vague justification, the étale cohomology of an abelian variety is given
by exterior powers of H1

ét, and therefore determined by H1
ét. This in turn is determined by the

characteristic polynomial of Frobenius, and Honda-Tate theory says that the abelian varieties
sharing a common characteristic polynomial of Frobenius are precisely the isogeny classes. So
parametrizing isogeny classes of abelian varieties over Fp is the same as parametrizing motives of
abelian varieties over Fp.

Now to say that Q is the Tannakian fundamental group of motives over Fp is to say that the
category of motives is equivalent to the category of representations of Q. Thus to give a motive
over Fp is the same as giving a representation Q → GL(V). (The notion of a representation
actually requires a slight adaptation to the setting of Galois gerbs, but we’ll ignore this). A
morphism Q→ G, i.e. a representation factoring through G, can then be thought of as a “motive
with G-structure”.

Finally, we don’t want all motives with G-structure, only those of abelian varieties, and only
abelian varieties suitable to contribute to our “moduli problem”. This is the content of the con-
dition that our morphism be admissible. Admissibility includes a condition at each prime and a
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global condition; for example, the condition at p can be understood as saying that the isocrystal
associated to our motive is among the isocrystals we expect to see arising from an abelian variety
on our Shimura variety.

So an admissible morphism φ : Q → G can be thought of as a “motive of an abelian variety
with G-strurcture” contributing to our Shimura variety, and we can imagine that this is a suitable
replacement for an isogeny class. And the sets Xp(φ), Xp(φ), though indirectly, can be thought of
as parametrizing prime-to-p and p-power isogenies, and Iφ(Q) as a group of self-isogenies.

One may wonder, still, how any of this can be made precise without a tractable moduli de-
scription of our Shimura variety. Recall the theorem of Honda-Tate theory that every isogeny
class of abelian varieties over Fq contains the reduction of a CM abelian variety from character-
istic zero. One of the essential parts of Kisin’s work is a generalization of this: after defining a
notion of isogeny class on the mod-p points of our Shimura variety, he shows that every isogeny
class contains the reduction of a “special point” from characteristic zero. One also shows that all
admissible morphisms Q → G arise from special points, and this is what allows the two sides to
be related.
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